Application of XP-SWMMto the KISSIMMEE BASIN

Recent Relative XP Software Experience

- XP Software ported the UKISS model to Windows
- We also added graphics and refined some of the algorithms
- Recently integrated a 2-D model with XP-SWMM for overland flows
- New framework permits further development to distributed catchment modeling

Description of XP-SWMM

- Modeling software for watershed, river, storm and wastewater management
- Decision support system encompassing a graphical user interface and an analytical engine
- The XP interface stands for the embedded eXPert system
- Analytical engine is based on EPA SWMM and contains numerous proprietary enhancements

Basin Hydrology

- Surface hydrograph generation using 12 methods: RUNOFF, SCS, SBUH, Kinematic wave and many other unit hydrograph methods
- RUNOFF method is a deterministic model which can simulate: rainfall, snowmelt, infiltration, evaporation, and groundwater interaction
- Continuous and event simulations
- Simulate spatial and temporal variation in rainfall
- Catchment parameters: lumped (subcatchment basis)
- Redirect surface flows Low Impact Development
- Water quality (generate non point source pollutographs)
- Global Storms –(simulate multiple return periods)
- BMP in hydrology layer

Basin Hydrology – Losses

- Initial abstractions are simulated by unique depression storage depths for impervious and pervious surfaces on each subcatchment
- Infiltration by Horton, Green-Ampt and initial, proportional and continuing loss methods
- Continuous simulations infiltration capacity and surface storage is recovered
- Horton infiltration allows cumulative infiltration volume cutoff to limited soil storage
- Infiltration is optionally coupled to the groundwater
- Evaporation as daily or monthly averages
- Evaporation as a continuous time series

Hydrology Methods

- 12 different methods
 - SWMM RUNOFF
 - Kinematic Wave
 - Laurenson
 - SCS
 - Unit Hydrographs
 - SBUH
 - Snyder
 - Rational Formula
 - Time Area
 - Nash
 - Rational Method Uses IDF
 - Plus Regional Methods
 - LA County Method (MORA)
 - CUHP
 - Alameda County (Snyder)

RUNOFF Layer Conceptualization

EPA Surface Runoff Non-linear Reservoir

Catchment Surfaces

Q, or surface runoff to the inlet is the sum of all three area flows.

Note: Impervious and pervious areas have a different W/n ratio for calibration.

Surface Flow Redirection

- Redirect flows by surface and between subcatchments
- Permits LID and source control BMP modeling

Infiltration Procedures

- Horton
- Horton with cumulative maximum infiltration
- Green-Ampt
- Initial and continuing loss
- Initial and proportional loss
- All the above optionally connected to groundwater
- Losses associated with the unit hydrograph method:
 - SCS loss rates & fraction initial abstraction
 - SCS loss rates & fixed depth initial abstraction

Basin Hydrology - Groundwater

- Subsurface hydrology using 2 compartment groundwater module
- Each subcatchment has its own groundwater storage
- High groundwater table can cut off infiltration
- Groundwater between subcatchments not currently simulated

Groundwater Flows

- Groundwater flow can be redirected to other nodes or links
- Groundwater flow can be drained out of the system
- Boundary condition can be static or dynamic conduit depth

Groundwater Hydraulics

- No current groundwater interaction between subcatchments
- With software developments:
 - This could be easily simulated with a rating curve
 - XP-SWMM could be integrated with MODFLOW

Flexible Rainfall Data Input

- Single event or continuous rainfall stored in or linked to XP
- Constant or variable time steps
- Design storms i.e. 72-hr SWFWMD
- Generate statistics on rain and graph the storms
- Import and analyze NWS, Earth Info, and user defined rainfall

Catchment Conceptualization

$$Q = \frac{1.486}{n} \bullet W \bullet (d - d_s)^{5/3} \bullet S^{1/2}$$

EPA Surface Runoff Non-linear Reservoir

Global Storms

Combined Hydrology and Hydraulics

• "Simultaneous" option allows Hydraulics to run at the same time as Runoff without the need for interface files.

Job Control	INTERNATION OF THE PERSON OF T	e Grani e Anda		Circle 05	W. 18.4.1	N I SECURE	HALLOW MAKE	<u>.</u>
Simulation Control		MARS.R	G/ATA	C 12 52	非君 汉帝	KERK.	72524757	?
Simulation Tole	rances	☐ Ro	outing Con	trol	M	lodify Cor	nduits	0
Junction Defaults		Output Control			Gauged Pollutants			
☐ Hot Re-start		☐ Po	llutant Lis	t		esign Cor	nstraints	
☑ Save All Results f	or Review	☑ Run H	lydrology	Hydraulic	s Simultan	eously		
-Time Control	year	month	day	hr	min	sec		
Start Time	1995	1	1	0	0	0		Į į
	1995	1	1	1	0	0		
End Time		Sharristan and	7752393			NO. 17335		
End Time Time Step 60		Save	Results I	Every 6	0.000	secs 🥥	mins	

• Dynamic depths of the conduits in Hydraulics can be linked to the Runoff groundwater module.

Hydraulics (Extran) Layer

- Dynamic wave routing (St. Venant equations)
- Fast solution with variable time step
- Handles multiple boundary conditions
- Simulates networks of open and closed conduits
- Handles multiple conduits, pumps, weirs, orifices
- Handles looped networks & adverse sloped conduits
- Can also route water quality
- Has several Real Time Control elements & capabilities
- Superior solution (more stable & capable than EPA)
- Inlet capacity analysis for dual drainage
- Real Time Control module (add-on)

St. Venant Equations

Continuity Equation: (Conserves Mass)

$$\frac{\partial \mathbf{A}}{\partial \mathbf{t}} + \frac{\partial \mathbf{Q}}{\partial \mathbf{x}} = \mathbf{0}$$

Momentum Equation:(Conserves Energy)

$$\frac{\partial \mathbf{Q}}{\partial \mathbf{t}} + \frac{\partial \left(\frac{\mathbf{Q}^2}{\mathbf{A}}\right)}{\partial \mathbf{x}} + \mathbf{g}\mathbf{A}\frac{\partial \mathbf{y}}{\partial \mathbf{x}} + \mathbf{g}\mathbf{A}\left(\mathbf{S}_e + \mathbf{S}_c + \mathbf{S}_f - \mathbf{S}_o\right) = \mathbf{0}$$

Link Node Representation

Natural Channel Definition

Natural Channel: Editing

- Copy and paste cross-section geometry
- Tabular or graphic editing of channel geometry as shown below by clicking and dragging the points
- Graphically select left and right overbank stations
- Store sections in the Global Database

Natural Channel Import and Storage

Import natural channel geometry from HECRAS or HEC-2

• Store and merge natural channel geometry in the global database

Hydraulic Elements and Structures

- Open and closed conduits including surcharged closed conduits
- Junctions, manholes, inlets, catchbasins and outfalls
- Inline and offline storage nodes i.e. lakes, ponds, wetlands and wide channels
- Side and bottom outlet circular and rectangular orifices
- Transverse and side flow weirs
- User defined weirs
- Pumps Rated by: dynamic head, depth or wet well volume
- Rating curves and flows specified by defined user equations
- Regulators, inflatable and bendable weirs
- Flexible BMP as storage and screening devices
- RTC of the above structures

FHWA Inlet Control Equations for Culverts

- The head under inlet control may be significantly greater than that estimated assuming outlet control.
- XP-SWMM uses Inlet Control equations from the FHWA's "Hydraulic Design of Highway Culverts".
- Select from 58 inlet configurations

3 2 6	None (,)	50000 - 60000 -	
Groove End Projecting (Circ, Conc) Headwall (Circ, Corr Metal)	[18] - Marie - Marie [19] M [18] M. (19]		
Headwall (Circ, Corr Metal)			
witered to Stupe (Circ, Corr Metal)	Headwall (Circ, Corr Metal) Mitered to Slope (Circ, Corr Met	•	
	OK OK		ASTAIL TO THE TANK THE TANK THE TANK THE

Inlet Control

Comparison of Culvert Headwater Elevation for Various Flow Control Conditions and Flow Rates

Pump Options

- Pump curves are stored in the Global Database
- Up to 7 pumps in a pump station
- Simulate variable speed pumps
- Generate flows based on pumping SCADA history

Real Time Control Module

"Public Friendly" DSS Tools

- Plan View Plotting and Plan View Export
- Comprehensive and Indexed Output File
- Review Results (Graphing of Time Series)
- Profile Plotting with Envelope of Maximums
- Dynamic Long Section View (Animation of HGL)
- Dynamic Section Views
- Dynamic Plan View
- Spatial Reports for Plan View Notation
- Graphical Encoding for Plan View Query
- Tabular Report (user-defined)
- XPX, RES and CSV Output to GIS or Databases
- XP Tables and Quick Data View Forms
- Interactive Analysis Engine & Run Time Graphing

Plan View Plotting and Export

Export Graphics	×
Current View	
Entire Network	
MS Windows' Enhanced M Export	/letafile Cancel

Output File

Review Results

Show Gauged Data

Profile Plotting Graphic

Profile Details

Profile plots allow natural surface, design surface and services

to be plotted

Dynamic Long-Section View

Dynamic Section Views

Dynamic Plan View

Spatial Reports

Graphical Encoding

Tabular Reports – Export to .CSV or .TXT

- Export report to text files .TXT or .CSV using icons or the Export menu
- Good link to GIS for model results

XPS												
<u>F</u> ile	<u>Export</u>	<u>W</u> indow	<u>H</u> elp									
CSV												
					XP-	SWM	M2000 H	ydrauli	cs Table			
		Link Nar	ne	Link data							Link Results	
	Link	USnode	DSnode	Conduit type	Dia	Width	Roughness	Slope %	US invert leve	DS invert level	Peak flow	Max Velocity
					m	m		96	m	m	cms	m/s
	1	MR001	MR001A	Circular	1.000	-	0.013	-	292.180	291.130	0.006	0.393
	2	MR001A	MR002	Circular	1.000	-	0.013	-	291.130	290.270	0.047	1.459
	3	MR002	MR003	Circular	1.000	-	0.013	-	290.270	288.250	0.068	1.694
	4	MR003	MR004	Circular	1.000	-	0.013	-	288.250	286.880	0.139	2.999
	5	MR004	MR005	Circular	1.000	-	0.013	-	286.880	284.930	0.140	2.345
	б	MR005	MR006	Circular	1.000	-	0.013	-	284.930	283.880	0.198	2.677
	7	MR006	MR007	Circular	1.000	-	0.013	-	283.880	281.740	0.199	2.695
	8	MR007	MR008	Circular	1.250	-	0.013	-	281.740	278.300	0.254	3.369
	9	MR008	MR009	Circular	1.250	-	0.013	-	278.120	277.260	0.273	2.587
	10	MR009	MR010	Circular	1.250	-	0.013	-	277.120	275.690	0.280	2.668
	11	MR010	MR010A	Circular	1.250	-	0.013	-	274.960	274.720	0.285	2.643
	12	MR010A	MR011	Circular	1.250	-	0.013	-	274.610	272.580	0.335	2.415
	13	MR011	MR012	Circular	1.250	-	0.013	-	272.580	271.570	0.341	2.440
	14	MR012	MR013	Circular	1.250	-	0.013	-	270.920	268.830	0.372	2.529
	15	MR013	MR014	Circular	1.250	_	0.013	_	268.110	266.470	0.438	2.491

XP Tables

- Exchange data with other programs and XP-Tables
- Create a Query by using filters

Quick Data View

X P C O ET W A P.

Interactive Analysis Engine and Runtime Graphing

Attach Images to Links and Nodes

- XP-SWMM supports images attached to both NODES and LINKS in the network. This feature is extremely useful when working on large projects with a range of photographs available.
- Most of the standard windows image file types are supported, ranging from BMP, JPG through to TIFF.

Interface: Efficient Model Input Tools

Data Entry in Dialogs

Text File (XPX, CSV) Import

XP Tables & Quick View Data Forms – Tabular Input & Copy/Paste

Dynamic with Link to External Data: XP-GIS GIS Module

Map your data to the XP database definitions

Once configured a simple click allows data to be imported, exported and updated

External Data Import/Expo	ort	x
Database Connections		†
Table	Database	
✓ manholes ✓ mains\$	Import completed. Links created: 1707 Nodes created: 0 XP Variables read: 8540 OK	
	Import Export	Close

Scenario Manager-Multiple Runs

Scenario Manager-Management and Reports

- Add, Delete and Activate Scenarios in the Manager Dialog
- Scenario Properties Track Changes Automatically

Scenario Manager- Series of Review Results

Scenario Manager – Multiple Results in Tables

	MM Ver. 9.00 it <u>Vi</u> ew Optio									_O×
		71 <u>2</u> ↓ <u>₹</u> ↓			Scenarios	_	$ \mathbf{x} $			
Name	Scenario	Shape	Diameter (Height)	Number of Barrels	Length	Max Flow (ft^3/s, m^3/s)	Weir Name	Weir Crest Elevation	Max Water Elevation (ft, m)	_
Section1	Base Scenari	Natural	0.75	1.0	150.00	5.96			562.03	
	Box Culvert					5.97			562.05	
	2 Box Culvert					5.96			561.96	
culverts	Base Scenari	Rectangul	1.00	2.00	31.00	5.75			560.08	
	Box Culvert					5.37			560.19	
	2 Box Culvert					5.95			559.50	
Overtop	Base Scenari						Overtop	560.00	560.08	
	Box Culvert								560.19	
	2 Box Culvert								559.50	
Section2	Base Scenari	Natural	1.50	1.0	270.00	5.91			559.19	
	Box Culvert					5.94			559.19	
	2 Box Culvert					5.94			559.19	
∢∏≯\ Culu	ert Detail /									' _
· [/ Cult	ert Detail /									NUM OVR

Encryption for XP-Viewer

Slides for Specific Questions

Horton Infiltration Curve

Horton Equivalent Time

Green-Ampt Equation

For F < Fs: f=i and $F_s=S_u$ IMD/ (i/K_s-1) for $i>K_s$ and no calculation of F_s for $i<K_s$

For F > Fs: $f = f_p$ and $f_p = K_s(1 + S_u IMD/F)$

Where:

f = infiltration rate, ft/sec,

 $f_p = infiltration capacity, ft/sec,$

i = rainfall intensity, ft/sec,

F = cumulative infiltration volume, this event, ft,

 F_s = cumulative infiltration volume to cause surface saturation, ft,

 S_u = average capillary suction at the wetting front (SUCT), ft water,

IMD = initial moisture deficit for this event (SMDMAX), ft/ft, and

 K_s = saturated hydraulic conductivity of soil, (HYDCON) ft/sec.

Powerful Network Editing

Split Links
Reverse Direction
Calculate Slope
Calculate Length

